Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Environ Health Sci Eng ; 19(2): 1807-1816, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1827382

ABSTRACT

Purpose: The association between air pollutant (PM2.5, PM10, NO2, and O3) concentrations and daily number of COVID-19 confirmed cases and related deaths were evaluated in three major Iranian cities (Tehran, Mashhad, and Tabriz). Methods: Hourly concentrations of air pollutants and daily number of PCR-confirmed cases and deaths of COVID-19 were acquired (February 20th, 2020 to January 4th, 2021). A generalized additive model (GAM) assuming a quasi-Poisson distribution was used to model the associations in each city up to lag-day 7 (for mortality) and 14 (for morbidity). Then, the city-specific estimates were meta-analyzed using a fixed effect model to obtain the overall relative risks (RRs). Results: A total of 114,964 confirmed cases and 21,549 deaths were recorded in these cities. For confirmed cases, exposure to PM2.5, NO2, and O3 for several lag-days showed significant associations. In case of mortality, meta-analysis estimated that the RRs for PM2.5, PM10, NO2, and O3 concentrations were 1.06 (95% CI: 0.99, 1.13), 1.06 (95% CI: 0.93, 1.19), 1.15 (95% CI: 0.93, 1.38), and 1.07 (95% CI: 0.84, 1.31), respectively. Despite several positive associations with all air pollutants over multiple lag-days, COVID-19 mortality was only significantly associated with NO2 on lag-days 0-1 and 1 with the RRs of 1.35 (95% CI: 1.04, 1.67) and 1.16 (95% CI: 1.02, 1.31), respectively. Conclusion: This study showed that air pollution can be a factor exacerbating COVID-19 infection and clinical outcomes. Actions should be taken to reduce the exposure of the public and particularly patients to ambient air pollutants. Supplementary Information: The online version contains supplementary material available at 10.1007/s40201-021-00736-4.

2.
Environ Sci Pollut Res Int ; 29(57): 85586-85594, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1338265

ABSTRACT

In the indoor environment of dental clinics, dental personnel and patients are exposed to a risk of infection because of the transmission of SARS-CoV-2 via particles or droplets. This study investigated the presence of SARS-CoV-2 RNA in indoor air of dental clinics in Tehran, Iran. Air sampling was done (n = 36) collecting particulate samples on PTFE filters at flow rates of 30 to 58 L/min. The samples were analyzed with novel coronavirus nucleic acid diagnostic real-time PCR kits. Only 13 out of 36 samples were positive for SARS-CoV-2 RNA. Logistic regression showed that sampling site's volume, PM2.5 concentration, number of people, and number of active patient treatment units were significantly positively related with the presence of SARS-CoV-2 RNA. Thus, strategies to control the spread of COVID-19 should include reducing the number of infected people in dental clinics, adding filtration systems, and/or improving ventilation conditions.


Subject(s)
Air Pollution, Indoor , COVID-19 , Humans , SARS-CoV-2 , Pandemics/prevention & control , RNA, Viral , Dental Clinics , Iran/epidemiology
3.
Atmos Pollut Res ; 12(3): 302-306, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1002310

ABSTRACT

This study investigated the presence of SARS-CoV-2 in air of public places such as shopping centers, a post office, banks, governmental offices, and public transportation facilities including an airport, subways, and buses in Tehran, Iran. A total of 28 air samples were collected from the eight groups of public and transportation locations. The airborne particle samples were collected on PTFE or glass fiber filters using two types of samplers with flow rates of 40 and 3.5 L/min, respectively. The viral samples were leached and concentrated, and RNA was extracted from each. The presence of viral RNA was evaluated using novel coronavirus nucleic acid diagnostic real time PCR kits. In 64% of the samples, SARS-CoV-2 RNA (62% and 67% from the public places and transportation, respectively) was detected. Positive samples were detected in banks (33%), shopping centers (100%), governmental offices (50%), the airport (80%), subway stations (50%), subway trains (100%), and buses (50%). Logistic regression showed that number of people present during the sampling and the sampled air volume were positively associated with presence of SARS-CoV-2; while the percentage of people with masks, air temperature, and sampling site's volume were negatively related to SARS-CoV-2's presence. However, none of these associations were statistically significant. This study showed that most public places and transportation vehicles were contaminated with SARS-CoV-2. Thus, strategies to control the spread of COVID-19 should include reducing the number of people in indoor spaces, more intense disinfection of transport vehicles, and requiring people to wear masks.

SELECTION OF CITATIONS
SEARCH DETAIL